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Let /(1) be defined in 10. 1 I by

/(11 = °
31

if 0 « t <; {.

if

- 1 if ; '" t '" 1.

and extended to all real 1 by requiring that /(t) should be an even function having
period 2. The plane arc defined parametrically by the equations

'. /(3'''1)
x(I) cc: ,-_.. •

/;-0 2" 1
I

.1'(1)
" f(J!""1)

'I ()

(O~t 1)

is known to be continuous, and to map the interval r = 10 ~ x ~ II onto the entire
square r'.~ 10 ~ x. .I' ~ Ii. (See I. J. Schoenberg. Bull. Amer. Math. Soc. 44
( 1938), 519). Here it is shown that th is arc is nowhcre differentiable. meaning the
following: There is no value of I such that both derivatives x'(1l and 1"(1) exist and
are finite.

I. INTRODUCTION

It came as quite a surprise to the mathematical world when. in 1875.
Weierstrass constructed an everywhere continuous. nowhere differentiable
function (see [I D. Equally startling though was the discovery by Giuseppe
Peano 121 IS years thereafter that the unit interval could be mapped
continuously onto the entire unit square 12

,

Well known now are examples of area-filling curves, and of continuous
functions which are nowhere differentiable, This paper brings together these
two pathological properties by showing that the plane Peano curve of
Schoenberg 131. defined in Section 3 below. lacks at every point a finite
derivative (Theorem 3), An analogous space curve IS similarly shown to fill
the unit cube /3 (Theorem 2). and to be nowhere differentiable (Theorem 4).
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A NON DIFFERENTIABLE PEANO CURVE

2. AN IDENTITY ON THE CANTOR SET T

29

The foundation of Schoenberg's curve is the continuous function J(t).
defined first in [0, 11 by

J(t) = ° if °~ t ~ t,
= 3t - I if +~ t ~~, (2.1 )

=1 if ff~t~1.

We then extend its definition to all real t such thatJ(t) is an even function of
period 2 (see Fig. 1). Thus

J(~t) = J(t), J(t + 2) = J(t) for all t.

The main property of this function is that it produces the following
remarkable identity on r.

LEMMA 1. If t is an element oj Cantor's Set T, then

t = \ ' 2J(3 nt)/3 n + '.
n :=-0

Proof If indeed t E T, it can be expressed as

(2.2 )

f

t = \' a /3 n + 1_ n

n 0

then (2.2) would follow from the relations

(an = 0, 2): (2.3 )

an = 2 . J(3 nt)

1ft)

(n = 0, 1,2,... ). (2.4 )

FIG. l. The continuous function f(I),
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To prove (2.4) observe that (2.3) implies

3n n (a o an-I) an an+ 1t=3 -+ ... +-- +-+--+ ...
3 3n . 3 32

'

whence
a a

3nt = M + -...'2 +~ + ...
n 3 32 (Mn is an even integer). (2.5 )

From the graph of f(t) we conclude the following:

f
n 2 2 I

I an = 0, then M n:( 3 t:( M n + 2 +1 + ... = M n+-
3 3· 3

and therefore f(3n t ) = O.

and so f(3 nt) = I.
This establishes (2.4) and thus the relation (2.2).

3. SCHOENBERG'S CURVE

This function is defined parametrically by the equations

( ) _ \, _1_ f (3 2 /l )
xt~_ n+1 t,

n 0 2
(3.1 )

(0:( t:( I). (3.2)

The mapping t -> (x(t), y(t)) indeed defines a curve: its continuity follows
from the expansions (3.1), (3.2) being not only termwise continuous. but
dominated by the series of constants

\> _1__
_ 2/l + I - I.

n 0

(3.3 )

These conditions insure their uniform convergence, and therefore also the
continuity of their sums.

Now if tEl. hence

t= \' ~
,';"""03 n + 1 (a/l = 0, 2), (3.4 )
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by (2.4) we may write (3.1) and (3.2) as

31

'J...

y(t) = \. __ . a 2" + I

,,--0 2n
•

1 2
(3.5 )

We then invert these relationships: let P = (x(t), y(/)) be an arbitrarily
preassigned point of the square /2 = ~O ~ x, y ~ I ~, and regard (3.5) as the
binary expansions of the coordinates of P. This defines a 2n and a 2n • J' and
therefore also the full sequence jan f. With it we define I (Er) by (3.4), and
thus the expressions (3.5), being a consequence of (3.1) and (3.2), show that
the point P is on our curve. This proves

THEOREM I. The mapping

{ ~ (x( t). y( r))

li'om / into /2 defined by (3.1), (3.2), is continuous, and covers {he square t,
el'el1 iF { is restricted (o Ihe Cantor Set r.

This result extends naturally to higher dimensions. We discuss only the
case of the space curve

, I
X(t) = \' -/(3' ''t)

,;--0 21111 ~

f. I
y{t) = \. __ /(3 ' /f+ It),

';-0 2"-r I

f 1
2(t) = \. -.- /(3 ' " + 2t)

';-"0 2" t I
(0 ~ (~ I).

(3.6 )

(3.7)

(3.8)

The continuity of X(/), Y(t). and 2(t), as in the two-dimensional case, is
guaranteed by the continuity of each of their terms and by the convergence

of the series of constants (3.3). If we define t by (3.4). so a" = 0.2 for 11 =
O. I. 2...., then again (2.4) shows that

\.., Q Jn + 2
2(t)= - ~'-2-

n 0

_ \. I a 'nX(t)- - ~'-2 .
n ~- 0

Cf

y(t) = \. --. a ,n_I

';-0 2/f- I 2
(3.9 )

If the right sides are the binary expansions of the coordinates of an
arbitrarily chosen point of ['. then this point of /1 is reached by our space
curve for the val ue of ( E r defined by (3.4). Thus we have proven
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THEOREM 2. The mapping

t --> (X(I). Y(I), Z(I))

from 1 into /3 defined by (3.6). (3.7). (3.8). is continuous. and fills the cube
/1, even if t is restricted to the Cantor Set r

Theorems I and 2 raise a interesting question. Just hOI\' does the plane
curve. for example. fill the square as t varies from 0 to I? Though by no
means may this question be answered completely, we can gain some feeling
for the curve's path by viewing it as the point-for-point limit of the sequence
of continuous mappings

(k = O. I. 2.... ). (3.10)

where x k and Yk are the kth partial sums of the series (3.1) and (3.2) defining
x and y. The graph of this sequence for k = 0, I. 2 and 0 ~ t ~ 1 is shown in
Fig. 2. (The origin is at the lower left corners. with x k and Yk on the

o

,0"\ ~

~
' "i

\ I, '
:",~I ',~ \,

i\JI \,

1\,
\

\~\j
~"i,,\'i", 1\L '--1\

•

,r" ,'\ J, ~r~ h>-
\',' i~\"i

\ IJ\L

I,'~."'~ \'~,,-,"I 'H'o'"""'\ fi',~\ "\, '
, \ u .

'I~.'1 .I \.....: '~U _ .

FIG. 2. The approximation curves ( ., (x,(I)..\',(1)) for I:. O. I. 2.
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horizontal and vertical axes, respectively. The dotted lines delineate the
boundary of [2.)

Note in particular in Fig. 2 that the curves lack the one-to-one property
for k = 1,2. This fact, together with the promise for increased complexity in
these approximation curves as k --> ro. suggests that the limit curve itself may
be many-ta-one.

The implication is indeed correct, and not only for the case at hand. If an
area-filling curve were one-to-one, it would be a homeomorphism. The unit
interval and J" (for n ~ 2), however. are not homeomorphic, since the
removal of any interior point disconnects [ but not J".

The point (t. t) of J' nicely illustrates this many-to-one property for
Schoenberg's curve (3.1). (3.2). Since the number 1 can be expressed in
binary form either as .1000... or .0 Ill.... (3.4) and (3.5) imply that
(x(to) 1'(£,,)) = (t. t) is the image of four distinct elements of the Cantor Set
[~ namely.

I I I 25 8 1
t =- - --
o 9' 36 . 36 ' 9 .

In fact, the set of all (x . .1') with four preimages in r is dense in the square.
Theorem 1 asserted that T, a set of Lebesgue measure zero, is sufficiently
large to be mapped onto [2, a set of plane measure 1. It would now seem that
T has more points than J'!

In the next section, we explore yet another property of Schoenberg's curve.
and prove our main result.

4. THE PEANO CURVE OF SCHOENBERG Is NOWHERE DIFFERENTIABLE

We say that a plane curve (x(t). y(t)) is differentiable at to if both
derivatives x f (to) and yf (t 0) exist and are finite. Our goal will be to prove

THEOREM 3. For no /'Glue of t do both functions

\
', 1 ,

x(t) = -f(Y"t)
• l~O 2"tl .

hare finite derivatives xf(t), yf(t).

(4.1 )

(4.2)

I More precisely. d. i) is a quintuple point of the curve. having its fifth preimage. I" = t in

10. 11\1.
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Sincef(t) is an even function of period two, then so are x(t) and yet). Thus it
suffices to prove Theorem 3 for tEl = [0. I I. The theorem will follow from
the proofs of two lemmas.

Let t be a fixed number in 10, II, expressed in ternary form by

(a// = 0. 1,2). (4.3 )

and corresponding to this t, define the following disjoint sets:

No = jn:a 2//=Of,

N I = jn: a 2// = If.

The first of our lemmas is

LEMMA 2. x'(t) does not exist finite£v if No U N2 is an infinite set.

In the proof we make use of several properties of the function f(t):

f(t + 2) = f(t) for all t. (4.4 )

If M is an integer and t l E IM,M++I. t2 E [M+~,M+ II, then

f(t) also satisfies the Lipschitz condition

(4.5 )

for any t I' 12 , (4.6)

Let us now assume that mE No U N2 , hence a 2m =°or a 2m = 2. For such
m, we define the increment

r5m==~9 m

==.~ t9 m

if a 2m = 0,

if a2m = 2.
(4.7)

(Jm

and seek to estimate the corresponding difference quotient

x(t + bm ) - x(1) _ \, _1_.,
om - ';--0 2rl -+ 1 In.m~

where
f(9//(1 + bm )) -- f(9//1).,

In.m -

We must distinguish three cases.

(4.8)

(4.9)
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(i) n > In. By (4.7), gn(5m = ± jgn-m, which is an even integer. Thus by
(4.4), we conclude that

., -0
In.m - if n > In, (4.10)

regardless of the value of aZm'

(ii) 11 < m. Here we make use of the Lipschitz inequality (4.6) to
show that

whence

ir/l.ml ~ 3· g/l

(iii) 11 = m. By (4.3), we see that

for 11 < m. (4.11 )

(M is an integer). (4.12)

Here we must distinguish two subcases:
If a 2m = 0, and so, by (4.7), gm(5m = 2/3, (4.12) implies that M ~ gmt ~

M + 2/3 2 + 2/3' + .... Since 2/3 2 + 2/3' + ... = 1/3, we find that M ~ gmt ~
At + 1/3, and therefore that M + 2/3 ~ gmt + gm(5m ~ M + I.

If a 2m = 2, then, by (4.7), gmom = -2/3. From (4.12), M + 2/3 ~ gmt ~
At +2/3 + 2/3 2 + ... = M + I, while M ~ gmt + gmom ~ M + 1/3.

Ineither subcase, we can apply (4.5) to conclude that

(4.13 )

regardless of the value of a 2m .
The results (4.10), (4.11), and (4.13) hold under the sale assumption

Applying them to the difference quotient

(4.14 )

we find by (4.8) that

1

m I I- '\' .
- _ 2"+1 Y",m

n --0
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I
'>--1"-;:::--- 2nJf1 ~/m.m

III I

!/ n
2" I

,.
/ n.m

I 3
.> ---~. _9'"::/' 2f1l -t-1 2

III j 1
\' ---. '\ .l)"

1;--0 2!J + I -

and finally

__ 3 (, 9 ',J II' 3 I' "l) " !II- 4 2 ~-7 (2)

, \(~/~(....:.:.jl_X(....:.:./) I''> _9 ('_9)' II' .\

1

__ ~' /Co -

()111 y- 28 2 + -7 if mE:;\u',--)N,. (4.15)

This establishes Lemma 2 if, in (4.15). we let In 'CfJ through the elements of
the infinite sequence No UN, .

We now turn out attention to the digits of / having odd subscripts. and
define the sets

Now if

then for r = 3/ we find

{II (l211 t Ir=a +-+ ... -1--+ ....
o 3 ' 3211' I

As the same time

I I J 1
x(r) = \' --f(3 2I1 r) = \ - -2-;;jI f(3 211 II) \'(1).

,~o 2"'I' II "

Applying Lemma 2 to x(l) at the point r = 3/. we see that the digits (L"

are the digits of r having eeell subscripts. We thus obtain

COROLLARY l. .1"(1) does 110/ exis/ filIi/ell' if N;) LJ jV; is an injlni/c SCI.

By Lemma 2 and Corollary I we can conclude that the only / for which
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x'(r) and y'(t) might both exist and be finite. is one whose sets No UN, and
IV;, U IV; are finite. This is the case if and only if the digits

a" = I for all sufficiently large 11. (4.16)

On the other hand. to prove the Ilolldifferentiability of the mapping (--+

(x(£). rU)). it suffices to show that one of the derivatives x l (£). r'(l) fails to
ex isl.

U:VIMA 3. If { is such {hal (4.16) holds. (hell x'(r) does IlO{ exiSl jinitely.

The simplest ( satisfying (4.16) is the one for which all a" = L or

(= ~. _l~
- v'tl

" II -

I

2

We must. however. treat the general case. where

(4.17)

with a" = O. I. 2 for 11 = O. I..... 2m ~ l. To prove the lemma. we proceed as
In Lemma 2 by estimating the difference quotient

where

x(r + 6",) ~ x(r)_ \. _1_.,
c5fil -- ';--0 2"+ I In.m"

f(9"(1 + 6",)) ~ f(9"{)
/n,m -

(4.18 )

(4.19)

Here. though. we must abandon our former choice for the increment 6", in
favor of

6m==~9 In. (4.20)

We will once again examine the quantity I'n.m in terms of three cases:

(i) 11 > m. From (4.20). 9"6", = ~9" m. which is an even integer. Thus.
by property (4.4). the periodicity of f(r). we see that

if 11 > m. (4.21 )

(i i) 11 < m. In this case. we again use the Lipschitz condition (4.6) to
concl ude that

!"".ml ~ 3 . 9" if 11 < m. (4.22)
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(iii) n = m. By (4.17),

JAMES ALSINA

whence

while

(M is an integer).

(4.24)

From the graph of f(t), Fig. 1,

feN + ~) = fO) = ~

and so from (4.23),

for any integer N. (4.25)

The addition of (4.23) and (4.24) gives

9"'t + 9"'6", = M + 13/18,

and since 2/3 < 13/18 < 1, Fig. I shows us that

if M is odd.

= I if M is even.

Regardless of the value of M, (4.26) and (4.27) imply that

and therefore, by (4.19) and (4.20), that

1/2 9",
1;'",.",1 =TJ,J =4 9 .

(4.26)

(4.27)

(4.28)

Applying the results (4.21), (4.22), and (4.28) to the difference quotient
(4.18),

_I x(t + 6",) ~ x(t) I_I \' _I_'
JIDQ",I- 6", - n--O 2n+I'n.m
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1 In , I 1
~-2m+1 IYm,ml~ ~ 2n,IIYn.ml

11-0

19 m - I 1
:> --. - 9m- \' --.3 ·9n
:/'2 m ,14 ,;-02 n + 1 •

which yields

(4.29)

If, in (4.29), we let m -> 00, om -> 0, hence x is not differentiable at t. This
establishes Lemma 3, and therefore also Theorem 3.

While Lemma 3 alone is sufficient to prove the nondifferentiability of the
mappIng

t -> (x(t). y(t)) (4.30)

for t defined by (4.17), y'(t) as well may be shown not to exist for such t.
This claim IS easily verified by the same argument that produced
Corollary I.

5. THE GENERALIZATION OF THEOREM 3

Analogous to Schoenberg's plane Peano curve (4.1), (4.2) IS the space
curve

f I
Z(t) = \' 2n+ I f(3.1n+ 2t )

n-O

(0";; t ,,;; I),

(5.1 )

(5.2)

(5.3 )

introduced in Section 3. By way of Theorem 2, we saw that these functions
define a Peano curve filling the unit cube /.1. Here, in a similar fashion, we
seek to extend Theorem 3 to higher dimensions.

THEOREM 4. The Peano curve defined by (5.1), (5.2), (5.3) above is
nowhere dijJerentiable.

The technique of proof used for Theorem 3 will apply nicely; agaIn we
shall have two lemmas and a corollary.
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Indeed. with t defined by

all a 1 a"
1=- +--,+'" +~- + ...

3 3' 3" + 1

we define the corresponding sets of integers

(a l1 =0.1.2l.

:H. = PI: a," = 2(.

and state

LEMMA 4. The derivative X' (t) does not exist finilely illHo U "H, is an
infinite set.

For In E Mo U M,. we define the increment

::=- J3 Jm

and investigate the difference quotient

if a,,,, =0.

if a ,,,, = 2.

where

\' --',
,~o 2/1 ;·1 In,m"

Proceeding as in the proof of Lemma 2. we find that

which proves Lemma 4. if we let In ---; CfJ through the elements of Mo U ,Iv!,.

Using the identities Y(t) = X(3t). Z(i) = X(3 21). we obtain the following:

COROLLARY 2. (i) Iflhe sets M;) = in: a"" 1 =Of. M') = in: a'II" 1 = 2:
are such thai M~ U M; is an infinite sel. then Y'(I) does /101 exisl flnilely.

(ii) lflhesetsM;;=~n:a3".,=OI.M~=ln:a,,,t,=2faresuchlhat

At;; U M~ is an irifinile sel. Ihen Z' (i) does nol exisl jinilely.

The only I for which all the derivatives X'(l). Y'(l). Z'(t) might still exist is
one whose sets

M;;UM~
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are all finite. This condition is true if and only if

41

all = I

We now state our final

for all sufficiently large II. (5.4 )

LE:\IMA 5. Suppose t satisfies (5.4). Then none of the derivatives X'(I).
y'(t). 7'(1) exists alld is fillite.

The proof of the claim for X' (t) follows from the choice of

and those for y'(t) and 7'(1) from arguments similar to the proof of
Corollary I in Section 4.

6. A FINAL REMARK

With its complete lack of differentiability, Schoenberg's plane curve
provides an interesting contrast to the Peano curve from which it is derived.
that of Lebesgue (see 131).

Under Lebesgue's mapping L(t), each (xo' Yo) of 12
, expressed as

(XI U, _ as
l' =~+-,+-+ '"
• 0 2 2~ 23 (a; = O. I),

is the image of a point to in Cantor's Set r of the form

2ao 2a} 2ac(o=-3-+Y+7+ ....

This correspondence we now recognize as a restatement of the relations
(3.5). As such. L(t) coincides with Schoenberg's curve on L and thus must
lack a finite derivative there.

Lebesgue then extends the domain of L(() to all of [0, II by means of
linear interpolation over each of the open intervals which comprise the
complement of r. Defined in this manner, L(t) must indeed be differentiable
on 10, I 1\1', and hence constitutes an example of a Peano curve which,
unlike Schoenberg's, is differentiable almost everywhere.
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